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Background

AIRS + CrlS Lifetimes Entering Climate Regime
@ AIRS products developed for NWP
@ Is our existing approach going to meet climate
requirements?
@ How will we connect AIRS + CrlS + IASI, etc.?

Climate Requirements/Users

@ Can Level 2 provide accurate Level 3 climatologies?
@ How provide error characterization and traceability?
@ Data processing should be as simple as possible so

reproducible by others (and is widely understood).
@ Open source

AIRS/CrIS/IASI brings a tremendous improvement to climate
trending with high vertical sensitivity for T(z), H,O (z), etc.
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Climate Variabililty and Measurement Accuracy
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@ Convert AIRS to CrlS ILS for
AIRS stability will become radiance time series

more important with time.
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Alternative Retrieval Path for Climate Trending

Two Approaches

@ Derive trends and anomalies in radiance space, then
retrieve geophysical variables

@ Examine trends in Probablity Distribution Functions
(PDFs) of single channels to focus on extremes).

T(z) and H>,O(z) “Level 3” profile trends and anomalies are
key for climate monitoring.

Can we determine L3 errors using this approach?

We just received a NASA Roses award to examine how well
AIRS + CrlIS can be combined for climate-level trending.
(Note: We need L1c for this work!)



Approach
@00

Continuation of AIRS with CrIS: A Proposal
AIRS L1c is a key ingredient

@ AIRS only: using L1c means only one RTA! That is good!
@ L1c makes it easier for others to look at AIRS radiances
(public relations mostly, but we need it)
@ Convert AIRS to (some TBD) version of CrlS ILS (SNO work
below shows we can do this, if we have L1c)
@ Convert AIRS to (some version) of CrlIS ILS, modify noise
e Single RTA! Different ILS means different sensitivities and
different RTA accuracies.
e Well understood conversion, not statistical
@ Minimizes effect of ILS on retrievals
e Only way to stitch together AIRS and CriIS/IASI and
remove radiometric differences from the climate record.
@ This approach makes the processing system simpler in the
long run.
@ We will be testing this approach in the context of the work
shown here using radiance-based trends and anomalies
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SNQO’s Used to Stitch AIRS to CrIS

AIRS SNOs converted to CrlS ILS
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@ |ASI could be used as a “third-party” if CrIS and AIRS are
not simultaneously in orbit

@ AIRS-IASI SNOs that are only at high latitudes appear very
similar to AIRS-CrIS SNOs at all latitudes, on average.
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Radiance Based Trending

@ Operate in radiance space as long as possible (error
traceability)

@ Lower data volumes (1-2% for some products)
@ Data averaging (gridded, zonal)

@ Adopt OE retrieval framework with scattering RTA:
a-priori for trends is zero.

@ Using a L1-type Tikhonov empirical smoother with some
help from an estimated a-priori covariance.

13-year T(z), H,0 (z) anomalies (zonal) can be processed in
1-2 hours on 40 cpu cores! (Years to test AIRS V6 Level 3!).
Linear zonal rates just take a minute to run on 100 layers.

Small data set for use by a larger community
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Radiance Time Series and Anomalies
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@ Data Set: 2378 channels by 40 zonal bins

@ Fit to a constant, a time derivative, and annual sinusoids
and harmonics.

@ Generate jacobians

@ Retrieve geophysical rates and anomalies from radiance
rates and anomalies.
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Radiance Trend Examples
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@ Level 2: ~20K Range, 0.2K Noise or S/N ~100
@ Trends: ~0.02K Range, 0.002K Noise or S/N ~10
@ Very different degrees of freedom, kernel functions
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Treatment of Uncertainties in Trends

@ Use simulated data from ERA (one-to-one match with
AIRS obs) to estimate OE parameters (L1 smoothing,
a-priori covariance)

© Then compare data sets and ignore uncertainty in
spectral rates due to inter-annual variability. Trends
seem too high for all approaches?

© Scientifically valid trends: include uncertainty in spectral
rates due to geophysical inter-annual variability in UMBC
retrieals, trends greatly reduced. But what about AIRS L3
and ERA trends?

© What are the proper averaging kernels (AK) for profile
trends?

© More simluation work needed to set covariance and L1
smoothing. Minimize kernel ringing.
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13-Year Temperature Trends: AIRS (No Obs Errors)
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13-Year Temperature Trends: AIRS (No Obs Errors)

Pressure (mbar)

Pressure (mbar)

10
100
0
1000l ‘
-80 -60 -40 -20 0 20 40 60 80
Latitude

UMBC (K/year).

,—'

100

1000,
-80

-60 40 -20 20 40 60 80

0
Latitude

AIRS Level 3 (K/year)

" 0.05

0.05

Pressure (mbar)

Pressure (mbar)

10

100

1000"

0 20
Latitude

ERA x Averaging Kernel (K/year)

o

-80

-60  -40 -20 0 20 40 60 80
Latitude

Simulated ERA (K/year)



Trends
[e]e]e]e] Telelelelele)

13-Year Water Vapor Trends (No Obs Errors)
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13-Year Water Vapor Trends (No Obs Errors)
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13-Year Linear Temperature Trends
Now including BT rate uncertainties. UMBC uncertainty: 0.03K/Decade
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Temperature trends lowered by use of linear BT rate
uncertainties (inter-annual variability).

Results sensitive to L1 smoothing, which was set to work well
with simulations.
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T(z) Trend Comparisons with AIRS L3 and ERA

This Work (All trends are K/decade)
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H>,O Comparisons with AIRS L3 and ERA? (%/Year)
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13-Year Ozone Trends?
NO application of AK to AIRS Level 3 Ozone
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Zonal T Trend Examples from the Literature

@ Zonal trends commonly used in climate/feedback studies
@ Zonal averages let’s us keep all data in memory
@ No reason we cannot transition to gridded trends in the

future
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Zonal H,O Trend Examples from the Literature
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Conclusions

Climate trending with AIRS + IASI may need some new
approaches.

@ Years between AIRS Product versions: 5+

@ Overhead of producing all AIRS products is gigantic

@ Very complex algorithm

@ Simpler approachs with smaller datasets may be key in

engaging the scientific community with hyperspectral IR
for future climate studies.

@ We cannot just ignore AIRS and CrlS differences for
climate-level research.

@ Level 3 Algorithm does not estimate errors
@ Trending with AIRS Level 3 might? be problematic.
| believe we should seriously look at using AIRS L1c for

standard products and AIRS converted to CrlS for L3-oriented
science.
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